Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(2): 753-764, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38086665

RESUMO

In this study, a series of structurally rigid cyclooctyl-fused iminopyridine iron complexes, [L2FeCl][FeCl4] and [2L3Fe][Cl][3FeCl4], was synthesized via a one-pot method and investigated as precatalysts in conjunction with methylaluminoxane for isoprene (Ip) polymerization. Combined characterization through FTIR analysis, elemental analysis and single crystal XRD analysis fully verified the structure of these complexes. The most active iron complex, FeH, exhibited a trisligated nature, with its cation adopting an octahedral geometry around the metal center. In contrast, all the other iron complexes (Fe2Me, Fe2Et, Fe2iPr, Fe3Me, Fe2Et,Me) displayed bisligated configurations, with distorted trigonal bipyramidal geometry of cations. During isoprene polymerization, the extent of steric hindrance of the ligand framework exerted a significant impact on catalytic performance. The FeH precatalyst with less steric hindrance demonstrated excellent performance, producing high molecular weight polyisoprenes with conversions exceeding 99% for 4000 equiv. of monomer. Even at very low catalyst loadings, as low as 0.0025 mol% (Fe/Ip), the polymerization of isoprene could proceed smoothly with an exceptionally high activity of 4.0 × 106 gPI (molFe, h)-1. Moreover, this precatalyst exhibited good thermal stability, maintaining high activity levels (typically 105 gPI (molFe, h)-1) across a broad temperature range from -20 °C to 100 °C. Additionally, by adjusting steric substituents and the reaction temperature, the 1,4/3,4 regioselectivity could be modulated from 9/91 to 69/31 while maintaining a high stereoselectivity of cis-1,4 structures (cis/trans: >99/1).

2.
J Comput Chem ; 45(11): 798-803, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38126933

RESUMO

The study aims to execute machine learning (ML) method for building an intelligent prediction system for catalytic activities of a relatively big dataset of 1056 transition metal complex precatalysts in ethylene polymerization. Among 14 different algorithms, the CatBoost ensemble model provides the best prediction with the correlation coefficient (R2 ) values of 0.999 for training set and 0.834 for external test set. The interpretation of the obtained model indicates that the catalytic activity is highly correlated with number of atom, conjugated degree in the ligand framework, and charge distributions. Correspondingly, 10 novel complexes are designed and predicted with higher catalytic activities. This work shows the potential application of the ML method as a high-precision tool for designing advanced catalysts for ethylene polymerization.

3.
RSC Adv ; 13(43): 29866-29878, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37842685

RESUMO

A series of N-(2-(diphenylphosphino)ethyl)-2-alkyl-5,6,7,8-tetrahydroquinolin-8-amines was prepared and used in individually reacting with iron chloride under nitrogen atmosphere to form their iron(ii) complexes Fe1-Fe6. All compounds were characterized using FT-IR spectroscopy and elemental analyses, the organic compounds were confirmed with NMR measurements, and the iron complexes were submitted to single-crystal X-ray diffraction, revealing Fe1, Fe2, Fe4, Fe5, and Fe6 as either mono- or di-nuclear forms. Forming a binary system in situ with two equivalents of LiCH2SiMe3, all iron complexes Fe1-Fe6 efficiently initiated the ring opening polymerization of ε-caprolactone, achieving the TOF up to 8.8 × 103 h-1. More importantly, the resultant polycaprolactone (PCL) possessed high molecular weights with the Mn range of 9.21-24.3 × 104 g mol-1, being a rare case of the iron(ii) catalyst in producing PCL with such high molecular weight. The 1H NMR and MALDI-TOF investigations demonstrated that the PCLs were linear features capped with a methoxy group or CH2SiMe3 or cyclic structure that varied with the molar ratio of [ε-CL]/Fe.

4.
Dalton Trans ; 52(30): 10574-10583, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458677

RESUMO

A series of manganese(I) carbonyl complexes bearing structurally related NN- and NNN-chelating ligands have been synthesized and assessed as catalysts for transfer hydrogenation (TH). Notably, the NN-systems based on N-R functionalized 5,6,7,8-tetrahydroquinoline-8-amines, proved the most effective in the manganese-promoted conversion of acetophenone to 1-phenylethanol. In particular, the N-isopropyl derivative, Mn1, when conducted in combination with t-BuONa, was the standout performer mediating not only the reduction of acetophenone but also a range of carbonyl substrates including (hetero)aromatic-, aliphatic- and cycloalkyl-containing ketones and aldehydes with especially high values of TON (up to 17 200; TOF of 3550 h-1). These findings, obtained through a systematic variation of the N-R group of the NN ligand, are consistent with an outer-sphere mechanism for the hydrogen transfer. As a more general point, this Mn-based catalytic TH protocol offers an attractive and sustainable alternative for producing alcoholic products from carbonyl substrates.

5.
Molecules ; 28(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37375408

RESUMO

Four examples of N,N-bis(aryl)butane-2,3-diimine-nickel(II) bromide complexes, [ArN=C(Me)-C(Me)=NAr]NiBr2 (where Ar = 2-(C5H9)-4,6-(CHPh2)2C6H2 (Ni1), Ar = 2-(C6H11)-4,6-(CHPh2)2C6H2 (Ni2), 2-(C8H15)-4,6-(CHPh2)2C6H2 (Ni3) and 2-(C12H23)-4,6-(CHPh2)2C6H2 (Ni4)), disparate in the ring size of the ortho-cycloalkyl substituents, were prepared using a straightforward one-pot synthetic method. The molecular structures of Ni2 and Ni4 highlight the variation in the steric hindrance of the ortho-cyclohexyl and -cyclododecyl rings exerted on the nickel center, respectively. By employing EtAlCl2, Et2AlCl or MAO as activators, Ni1-Ni4 displayed moderate to high activity as catalysts for ethylene polymerization, with levels falling in the order Ni2 (cyclohexyl) > Ni1 (cyclopentyl) > Ni4 (cyclododecyl) > Ni3 (cyclooctyl). Notably, cyclohexyl-containing Ni2/MAO reached a peak level of 13.2 × 106 g(PE) of (mol of Ni)-1 h-1 at 40 °C, yielding high-molecular-weight (ca. 1 million g mol-1) and highly branched polyethylene elastomers with generally narrow dispersity. The analysis of polyethylenes with 13C NMR spectroscopy revealed branching density between 73 and 104 per 1000 carbon atoms, with the run temperature and the nature of the aluminum activator being influential; selectivity for short-chain methyl branches (81.8% (EtAlCl2); 81.1% (Et2AlCl); 82.9% (MAO)) was a notable feature. The mechanical properties of these polyethylene samples measured at either 30 °C or 60 °C were also evaluated and confirmed that crystallinity (Xc) and molecular weight (Mw) were the main factors affecting tensile strength and strain at break (εb = 353-861%). In addition, the stress-strain recovery tests indicated that these polyethylenes possessed good elastic recovery (47.4-71.2%), properties that align with thermoplastic elastomers (TPEs).

6.
Clin Neuroradiol ; 33(1): 121-127, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35768695

RESUMO

PURPOSE: Excessive daytime sleepiness (EDS) is a common non-motor symptom in Parkinson's disease (PD), but its neuropathology remains elusive. Our goal is to explore the potential neural substrates of EDS in a large sample of individuals with PD. METHODS: We recruited 48 PD patients with and 87 PD patients without EDS. We used resting-state functional magnetic resonance imaging to compare amplitudes of low-frequency fluctuations (ALFF) between the two groups. We also explored functional connectivity (FC) between the entire brain and regions where ALFF differed between the two groups as well as FC between selected regions of interest. Age, Part III of the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS-III) score and use of dopamine receptor agonists were treated as covariates in the comparisons. RESULTS: EDS was associated with significantly lower ALFF in the left angular gyrus, and ALFF in this region correlated negatively with score on the Epworth Sleepiness Scale in patients with PD. EDS was also associated with significantly lower FC between the left angular gyrus and right cerebellum, based on seed-to-voxel and inter-ROI analyses. CONCLUSION: Our results suggest that EDS in PD patients is associated with reduced spontaneous neural activity in the left angular gyrus and with reduced FC between the left angular gyrus and cerebellum. These findings may help understand and treat EDS in PD.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Imageamento por Ressonância Magnética/métodos , Distúrbios do Sono por Sonolência Excessiva/etiologia , Distúrbios do Sono por Sonolência Excessiva/complicações , Encéfalo/patologia , Lobo Parietal/patologia
7.
RSC Adv ; 13(1): 14-24, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36545290

RESUMO

The fluoro-substituted 2,6-bis(arylimino)pyridine dichlorocobalt complexes, [2-{CMeN(2,6-(Ph2CH)2-3,4-F2C6H)}-6-(CMeNAr)C5H3N]CoCl2 (Ar = 2,6-Me2C6H3 Co1, 2,6-Et2C6H3Co2, 2,6-iPr2C6H3Co3, 2,4,6-Me3C6H2Co4, 2,6-Et-4-MeC6H2Co5), were synthesized in good yield from the corresponding unsymmetrical N,N,N'-ligands, L1-L5. Besides characterization of Co1-Co5 by FT-IR spectroscopy, 19F NMR spectroscopy and elemental analysis, the molecular structures of Co2 and Co5 were also determined highlighting the unsymmetrical nature of the terdentate ligand and the pseudo-square pyramidal geometry about the metal center. When either MAO or MMAO were employed as activators, Co1-Co5 were able to achieve a wide range of catalytic activities for ethylene polymerisation. Co5/MAO exhibited the highest activity of the study at 60 °C (7.6 × 106 g PE mol-1 (Co) h-1) which decreased to 3.3 × 106 g PE mol-1 (Co) h-1 at 80 °C. In addition, it was found that the polymerisation activity increased as the steric hindrance imparted by the ortho groups was enhanced (for MMAO: Co3 > Co5 > Co2 > Co1 > Co4), a finding that was supported by DFT calculations. Furthermore, it was shown that particularly high molecular weight polyethylene could be generated (up to 483.8 kg mol-1) when using Co5/MMAO at 30 °C, while narrow dispersities (M w/M n range: 1.8-4.7) and high linearity (T m > 131.4 °C) were a feature of all polymers produced. By comparison of Co3 with its non-fluorinated analogue using experimental data and DFT calculations, the substitution of fluorides at the meta- and para-positions was demonstrated to boost catalytic activity and improve thermal stability.

8.
Int J Mol Sci ; 23(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36430872

RESUMO

Ethylene polymerization with bis(imino)pyridlyiron precatalysts generally produces linear polyethylene (PE) even with the presence of α-olefins because α-olefins are not incorporated into polymeric products. Interestingly, α-olefins, such as hexene-1 or butene-1, have been found to act as effective chain transfer agents in the ethylene polymerization promoted by nonsymmetrical bis(imino)pyridyliron complexes with modified methylalumoxane (MMAO), resulting in higher catalytic activities with higher amounts of polymers with lower molecular weights, and, more importantly, narrower molecular weight distributions of the resultant polyethylenes (PE). This phenomenon confirms the assistance of α-olefins in the chain-termination reaction of iron-initiated polymerization and regeneration of the active species for further polymerization. Besides higher activities of the catalytic system, the formation of linear PE with trans-vinylene terminal groups and lower molecular weights are explained. The observation will provide a new pathway for enhancing catalytic activity and improving the quality of polyethylenes obtained by regulation of molecular weights and molecular weight distribution.


Assuntos
Alcenos , Etilenos , Polimerização , Piridinas , Polietileno , Polímeros , Compostos Ferrosos
9.
RSC Adv ; 12(37): 24037-24049, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36200024

RESUMO

The following family of N,N-diaryl-2,3-dimethyl-1,4-diazabutadienes, ArN[double bond, length as m-dash]C(Me)C(Me)[double bond, length as m-dash]NAr (Ar = 2,6-Me2-4-{CH(4-FC6H4)2}C6H2L1, 2-Me-6-Et-4-{CH(4-FC6H4)2}C6H2L2, 2,4-{CH(4-FC6H4)2}2-6-MeC6H2L3, 2,4-{CH(4-FC6H4)2}2-6-EtC6H2L4, 2,4-{CH(4-FC6H4)2}2-6-iPrC6H2L5), each incorporating para-substituted 4,4-difluorobenzhydryl groups but differing in the ortho-pairing, have been synthesized and used as precursors to their respective nickel(ii) bromide complexes, Ni1-Ni5. Compound characterization has been achieved through a combination of FT-IR, multinuclear NMR spectroscopy (1H, 13C, 19F) and elemental analysis. In addition, L1, Ni1 and Ni5 have been structurally characterized with Ni1 and Ni5 revealing similarly distorted tetrahedral geometries about nickel but with distinct differences in the steric protection offered by the ortho-substituents. All nickel complexes, under suitable activation, showed high activity for ethylene polymerization with a predilection towards forming branched high molecular weight polyethylene with narrow dispersity. Notably the most sterically bulky Ni5, under activation with either EtAlCl2, Et2AlCl or EASC, was exceptionally active (0.9-1.0 × 107 g of PE per (mol of Ni) per h) at an operating temperature of 40 °C. Furthermore, the polyethylene generated displayed molecular weights close to one million g mol-1 (M w range: 829-922 kg mol-1) with high branching densities (86-102/1000 carbons) and a selectivity for short chain branches (% Me = 94.3% (EtAlCl2), 87.2% (Et2AlCl), 87.7% (EASC)). Further analysis of the mechanical properties of the polymers produced at 40 °C and 50 °C using Ni5 highlighted the key role played by crystallinity (X c) and molecular weight (M w) on tensile strength (σ b) and elongation at break (ε b). In addition, stress-strain recovery tests reveal these high molecular weight polymers to exhibit characteristics of thermoplastic elastomers (TPEs).

10.
Dalton Trans ; 51(38): 14375-14407, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36047748

RESUMO

The interest in the late transition metal catalyst based design of new architectures of polyethylene (PE) has continuously been increasing over the last few years. The structure of these catalysts is predominantly important in controlling the morphological and architectural properties of the resulting polyethylene. Particularly, iminopyridine is a versatile bidentate support for Ni and Pd catalysts in ethylene (oligo)polymerization providing a wide variety of products ranging from volatile oligomers to ultra-high molecular weight polyethylene. Extensive structural modifications have been induced in the iminopyridine ligand through steric and electronic substitution, tuning the catalyst behavior in terms of activity and properties of the resulting polymer. Carbocyclic-fused iminopyridine and N-oxide iminopyridine are the new state of the art iminopyridine ligand designs. In this review, we aim to summarize all the developments in mononuclear iminopyridine-nickel and -palladium catalysts for ethylene (oligo)polymerization since the first report published in 1999 to present, focusing on the correlation among the pre-catalyst, co-catalyst type, thermal stability and polymer/oligomer structure. For comparison, the structural variations in the binuclear iminopyridine-nickel catalysts are also described. The detailed comparison of the structural variations in these catalysts with respect to their polymerization performance will give deep understanding in the development of new efficient catalyst designs.

11.
Molecules ; 27(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080222

RESUMO

Given the great importance of cobalt catalysts supported by benchmark bis(imino)pyridine in the (oligo)polymerization, a series of dibenzopyran-incorporated symmetrical 2,6-bis(imino) pyridyl cobalt complexes (Co1-Co5) are designed and prepared using a one-pot template approach. The structures of the resulting complexes are well characterized by a number of techniques. After activation with either methylaluminoxane (MAO) or modified MAO (MMAO), the complexes Co1-Co4 are highly active for ethylene polymerization with a maximum activity of up to 7.36 × 106 g (PE) mol-1 (Co) h-1 and produced highly linear polyethylene with narrow molecular weight distributions, while Co5 is completely inactive under the standard conditions. Particularly, complex Co3 affords polyethylene with high molecular weights of 85.02 and 79.85 kg mol-1 in the presence of MAO and MMAO, respectively. The 1H and 13C NMR spectroscopy revealed the existence of vinyl end groups in the resulting polyethylene, highlighting the predominant involvement of the ß-H elimination reaction in the chain-termination process. To investigate the mechanism underlying the variation of catalytic activities as a function of substituents, multiple linear regression (MLR) analysis was performed, showing the key role of open cone angle (θ) and effective net charge (Q) on catalytic activity.

12.
Front Neurosci ; 16: 905709, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937868

RESUMO

Background: The "postural instability/gait difficulty" (PIGD) and "tremor-dominant" (TD) motor subtypes of Parkinson's disease (PD) differ in their clinical manifestations. The neurological basis of these differences is unclear. Methods: We performed voxel-based morphometric analysis and measured amplitudes of low-frequency fluctuation (ALFF) on 87 PIGD patients and 51 TD patients. We complemented this neuroanatomical comparison with seed-to-voxel analysis to explore differences in functional connectivity. Results: The PIGD group showed significantly smaller gray matter volume in the medial frontal gyrus (mainly on the right side) than the TD group. Across all patients, gray matter volume in the medial frontal gyrus correlated negatively with severity of PIGD symptoms after controlling for age (r = -0.250, p = 0.003), but this correlation was not observed in separate analyses of only PIGD or TD patients. The PIGD group showed greater functional connectivity of the right superior frontal gyrus with the left lingual gyrus, right lateral occipital cortex, and right lingual gyrus. ALFF did not differ significantly between the two groups. Conclusion: Postural instability/gait difficulty may be associated with smaller gray matter volume in medial frontal gyrus than TD, as well as with greater functional connectivity between the right superior frontal gyrus and occipital cortex. These results may help explain the clinical differences between the two motor subtypes of PD.

13.
Neurosci Lett ; 788: 136835, 2022 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-35963477

RESUMO

OBJECTIVE: To explore differences in gray matter volume (GMV) and white matter volume (WMV) between patients with Parkinson's disease (PD) and healthy controls, and to examine whether the structural abnormalities correlate with functional abnormalities. METHODS: T1-weighted magnetic resonance imaging and resting-state functional magnetic resonance imaging (fMRI) were performed on 180 patients with PD and 58 age- and sex-matched healthy controls. We used voxel-based morphometry (VBM) to compare GMV and WMV between groups, and resting-state fMRI to compare amplitudes of low-frequency fluctuations (ALFF) in the structurally abnormal brain regions. RESULTS: Structural neuroimaging showed smaller whole-brain GMV, but not WMV, in patients. Furthermore, VBM revealed smaller GMV in the right superior temporal gyrus (STG) and left frontotemporal space in patients, after correction for multiple comparisons. Patients also showed significantly higher ALFF in the right STG. GMV in the right STG and left frontotemporal space in patients correlated negatively with age and scores on Part III of the Movement Disorder Society Unified Parkinson's Disease Rating Scale, but not with PD duration. CONCLUSIONS: Structural atrophy in the frontotemporal lobe may be a useful imaging biomarker in PD, such as for detecting disease progression. Furthermore, this structural atrophy appears to correlate with enhanced spontaneous brain activity. This study associates particular structural and functional abnormalities with PD neuropathology.


Assuntos
Doença de Parkinson , Substância Branca , Atrofia/patologia , Encéfalo , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Doença de Parkinson/patologia , Substância Branca/patologia
14.
Dalton Trans ; 51(29): 10983-10991, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35788782

RESUMO

Molybdenum complexes ligated with N1,N1-dialkyl-N2-(5,6,7,8-tetrahydroquinolin-8-yl)ethane-1,2-diamines and auxiliary ligands, providing various structural features, were developed: [NNH/NNHN]Mo(CO)4/3 (Mo1-Mo3), [NNHN]Mo(CO)2Br (Mo4-Mo5), [NNH]Mo(CO)(η3-C3H5)Br (Mo6) and [NNHN/S]Mo(CO)(PPh3)2 (Mo7-Mo8). All the complexes were highly active in the transfer hydrogenation (TH) of a model substrate (acetophenone), providing excellent yields of 1-phenylethanol. The structural variation in the ligand framework had a modest effect on the catalyst performance as compared to the changes in the auxiliary ligands Br, PPh3 and CO. This structural evolution provided the complex [Mo(NNH)(η3-C3H5)(CO)2Br] (Mo6) as the most effective catalyst not only for the transfer hydrogenation of acetophenone but also for a wide range of diverse ketones (up to 43 examples). Moreover, easy purification of the products by only removing the acetone byproduct is another noteworthy feature of this environmentally friendly route.

15.
RSC Adv ; 12(25): 15741-15750, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35685715

RESUMO

A series of cobalt complexes with bis(imino)pyridine derivatives featuring unsymmetrical substitution with bulky groups has been synthesized and characterized. The molecular structures of two representatives have been determined by the single-crystal X-ray diffraction study, revealing distorted tetrahedral geometry with different degrees of steric hindrance imparted by the two inequivalent aryl groups attached to the imine nitrogen atoms. On activation with either MAO or MMAO, these complexes display high activity toward ethylene polymerization, reaching 8.71 × 106 g of PE (mol of Co)-1 h-1 at 60 °C and produce polyethylene of high molecular weight (M w = 5.27 × 105 g mol-1) and low dispersity. The presence of the methoxy-substituent noticeably enhances the activity of the cobalt catalyst and increases the molecular weight of the resultant polyethylene.

16.
Pain Ther ; 11(3): 959-970, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35751780

RESUMO

INTRODUCTION: Pain in Parkinson's disease is poorly understood, and most patients with pain do not respond to dopaminergic drugs. We aimed to explore the mechanisms of dopa-responsive and -unresponsive pain by comparing such patients against patients without pain in terms of neural activity and functional connectivity in the brain. METHODS: We prospectively examined 31 Parkinson's patients with dopa-responsive pain, 51 with dopa-unresponsive pain and 93 without pain using resting-state functional magnetic resonance imaging. Neural activity was assessed in terms of the amplitude of low-frequency fluctuation, while functional connectivity was assessed based on analysis of regions of interest. RESULTS: Patients with dopa-unresponsive pain showed significantly higher amplitude of low-frequency fluctuation in the right parahippocampal/lingual region than patients with no pain. However, there was no amplitude difference between the dopa-responsive pain group and the no pain group. Patients with dopa-unresponsive pain also differed significantly from patients with no pain in their functional connections between the superior temporal gyrus and other areas of cerebral cortex, between amygdala and thalamus and between the amygdala and putamen. Patients with dopa-responsive pain differed significantly from patients with no pain in their functional connections between temporal fusiform cortex and cerebellum, between precentral gyrus and temporal fusiform cortex and between precentral gyrus and cerebellum. CONCLUSIONS: Regional neural activity and functional connectivity in the brain differ substantially among Parkinson's patients with dopa-unresponsive pain, dopa-responsive pain or no pain. Our results suggest that dopa-responsive and -unresponsive pain may arise through different mechanisms, which may help guide the development of targeted therapies.

17.
Dalton Trans ; 51(21): 8290-8302, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35583014

RESUMO

In this work, fluorinated 2,6-bis(arylimino)pyridyl iron(II) complexes, [2-[CMeN{2,4-{(4-FC6H4)2CH}2-6-F}]-6-(CMeNAr)C5H3N]FeCl2 (Ar = 2,6-Me2C6H3Fe1, 2,6-Et2C6H3Fe2, 2,6-iPr2C6H3Fe3, 2,4,6-Me3C6H2Fe4, and 2,6-Et2-4-MeC6H2Fe5) and [2-[CMeN{2-{(4-FC6H4)2CH}-4-{(C6H5)CHAr'}-6-F}]-6-(CMeN(2,6-iPr2C6H3))C5H3N]FeCl2 (Ar' = 3-{(4-FC6H4)2CH}2-4-NH2-5-FC6H2Fe6), verified with different steric substituents, were synthesized and characterized. The molecular structures of Fe2 and Fe3 were determined by X-ray diffraction, revealing a pseudo-square-pyramidal geometry. High activities were achieved toward ethylene polymerization in each iron complex case. The sterically least demanding ligand enhanced the activity of its complex Fe1 with the highest activity up to 16.8 × 106 g of PE (mol of Fe)-1 h-1at 70 °C, while the bulkiest ligand led to the formation of the highest molecular weight of the resulting polyethylene using Fe6. Generally, the resulting polyethylenes are highly linear and most of them have a tendency to display bimodal distributions by virtue of the presence of multiple sites or competing chain transfer reactions. End-group analysis of polyethylenes confirms that the end groups include both unsaturated vinyl-end groups and saturated n-propyl or i-butyl, revealing the co-existence of two chain termination pathways including primary chain transfer to aluminium and secondary ß-H transfer. The chain termination processes were interpreted with the 1D sequence inverse-gated decoupled 13C NMR measurement of the resulting polyethylenes and DFT calculations along with the relevant polymerization mechanism.

18.
Clin Auton Res ; 32(1): 51-58, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35059875

RESUMO

PURPOSE: The etiology of constipation in Parkinson's disease is largely unknown. The aim of this study was to explore changes in regional neural activity and functional connections associated with constipation in a large cohort of individuals with Parkinson's disease. METHODS: We prospectively recruited 106 patients with Parkinson's disease with constipation and 73 patients with Parkinson's disease without constipation. We used resting-state functional magnetic resonance imaging for the first time to measure differences in regional neural activity and functional connections between the two patient groups. RESULTS: Patients with constipation showed significantly higher amplitude of low-frequency fluctuation than patients without constipation in the right dorsal pons extending into the cerebellum and in the right insula. The two types of patients also showed substantial differences in functional connections linking the superior temporal gyrus, particularly the right superior temporal gyrus, with multiple brain regions. CONCLUSION: Regional neural activity and functional connectivity in the brain differ substantially between patients with Parkinson's disease with or without constipation. These findings provide a foundation for understanding the pathophysiology of constipation in Parkinson's disease and for identifying therapeutic targets.


Assuntos
Doença de Parkinson , Encéfalo/diagnóstico por imagem , Constipação Intestinal/complicações , Constipação Intestinal/etiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Estudos Prospectivos
19.
ACS Omega ; 6(44): 30157-30172, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34778687

RESUMO

In the present work, four new mono(imino)pyridine ligands, 2-((2,4-bis(bis(4-R-phenyl)methyl)-6-fluorophenylimino)methyl)pyridine (R = H, L1; R = OCH3, L2; R = F, L3) and 2-((2-(bis(4-fluorophenyl)methyl)-4-((3-(bis(4-fluorophenyl)methyl)-4-amine-5-fluoro-phenyl)(phenyl)methyl)-6-fluorophenylimino)methyl)pyridine (L4), have been designed in good yields. Additionally, three novel benzhydryl-bridged bis(imino)pyridine ligands, 2-(2-(bis(4-R-phenyl)methyl)-6-fluoro-phenylimino)pyridine (R = H, L5; R = OCH3, L6; R = F, L7), were also prepared for comparison. All these organic compounds have been characterized by FT-IR analysis, 1H/13C NMR spectroscopy, and elemental analysis. The treatment of L1-L7 with nickel halides afforded the corresponding monometallic (Ni1-Ni4) and bimetallic (Ni5-Ni7) nickel complexes in moderate to good overall yields. Upon activation with methylaluminoxane (MAO), Ni4 Cl showed the highest activity up to 8.3 × 106 g of polyethylene (PE) (mol of Ni)-1 h-1 among Ni1-Ni7 for ethylene polymerization. In all cases, unsaturated PEs with low molecular weights (0.7-13.3 kg mol-1) were produced effectively. The introduction of remote para-substituents into the benzhydryl groups showed a beneficial effect on catalytic activity with the overall activities following the order of Ni-F > Ni-OCH3 > Ni-H. In addition, these para-substituents were also found to affect not only the catalytic performance of catalysts but also the branching content of the PE product. Generally, the resultant PE waxes were moderately branched and contained both terminal vinyls (-CH=CH2) and internal vinylenes (-CH=CH-) while with different ratios of vinyls to vinylenes. Notably, the polymers produced using para-methoxy-substituted Ni2/MAO and Ni6/MAO possessed the least branching content and uniquely high vinyl contributions.

20.
Polymers (Basel) ; 13(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804261

RESUMO

Phenylethynyl-terminated aromatic polyimides meet requirements of resin transfer molding (RTM) and exhibits high glass transition temperature (Tg) were prepared. Moreover, the relationship between the polyimide backbones structure and their melting stability was investigated. The phenylethynyl-terminated polyimides were based on 4,4'-(hexafluorosiopropylidene)-diphthalic anhydride (6FDA) and different diamines of 3,4'-oxydianiline (3,4'-ODA), m-phenylenediamine (m-PDA) and 2,2'-bis(trifluoromethyl)benzidine (TFDB) were prepared. These oligoimides exhibit excellent melting flowability with wide processing temperature window and low minimum melt viscosities (<1 Pa·s). Two of the oligoimides display good melting stability at 280-290 °C, which meet the requirements of resin transfer molding (RTM) process. After thermally cured, all resins show high glass transition temperatures (Tgs, 363-391 °C) and good tensile strength (51-66 MPa). The cure kinetics studied by the differential scanning calorimetry (DSC), 13C nuclear magnetic resonance (13C NMR) characterization and density functional theory (DFT) definitely confirmed that the electron-withdrawing ability of oligoimide backbone can tremendously affect the curing reactivity of terminated phenylethynyl groups. The replacement of 3,4'-ODA units by m-PDA or TFDB units increase the electron-withdrawing ability of the backbone, which increase the curing rate of terminated phenylethynyl groups at processing temperatures, hence results in the worse melting stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...